Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Nat Commun ; 15(1): 3476, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658530

RESUMO

Cognitive maps in the hippocampal-entorhinal system are central for the representation of both spatial and non-spatial relationships. Although this system, especially in humans, heavily relies on vision, the role of visual experience in shaping the development of cognitive maps remains largely unknown. Here, we test sighted and early blind individuals in both imagined navigation in fMRI and real-world navigation. During imagined navigation, the Human Navigation Network, constituted by frontal, medial temporal, and parietal cortices, is reliably activated in both groups, showing resilience to visual deprivation. However, neural geometry analyses highlight crucial differences between groups. A 60° rotational symmetry, characteristic of a hexagonal grid-like coding, emerges in the entorhinal cortex of sighted but not blind people, who instead show a 90° (4-fold) symmetry, indicative of a square grid. Moreover, higher parietal cortex activity during navigation in blind people correlates with the magnitude of 4-fold symmetry. In sum, early blindness can alter the geometry of entorhinal cognitive maps, possibly as a consequence of higher reliance on parietal egocentric coding during navigation.


Assuntos
Cegueira , Mapeamento Encefálico , Córtex Entorrinal , Imageamento por Ressonância Magnética , Humanos , Cegueira/fisiopatologia , Masculino , Adulto , Feminino , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/fisiopatologia , Córtex Entorrinal/fisiologia , Mapeamento Encefálico/métodos , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Pessoa de Meia-Idade , Navegação Espacial/fisiologia , Adulto Jovem , Pessoas com Deficiência Visual , Cognição/fisiologia , Imaginação/fisiologia
2.
Eur J Psychotraumatol ; 15(1): 2335793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590134

RESUMO

Introduction: Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates plasticity in brain systems underlying arousal and memory and is associated with posttraumatic stress disorder (PTSD). Research in animal models suggests that PACAP modulates entorhinal cortex (EC) input to the hippocampus, contributing to impaired contextual fear conditioning. In PTSD, PACAP is associated with higher activity of the amygdala to threat stimuli and lower functional connectivity of the amygdala and hippocampus. However, PACAP-affiliated structural alterations of these regions have not been investigated in PTSD. Here, we examined whether peripheral PACAP levels were associated with neuronal morphology of the amygdala and hippocampus (primary analyses), and EC (secondary) using Neurite Orientation Dispersion and Density Imaging.Methods: Sixty-four (44 female) adults (19 to 54 years old) with DSM-5 Criterion A trauma exposure completed the Clinician-Administered PTSD Scale (CAPS-5), a blood draw, and magnetic resonance imaging. PACAP38 radioimmunoassay was performed and T1-weighted and multi-shell diffusion-weighted images were acquired. Neurite Density Index (NDI) and Orientation Dispersion Index (ODI) were quantified in the amygdala, hippocampus, and EC. CAPS-5 total score and anxious arousal score were used to test for clinical associations with brain structure.Results: Higher PACAP levels were associated with greater EC NDI (ß = 0.0099, q = 0.032) and lower EC ODI (ß = -0.0073, q = 0.047), and not hippocampal or amygdala measures. Neither EC NDI nor ODI was associated with clinical measures.Conclusions: Circulating PACAP levels were associated with altered neuronal density of the EC but not the hippocampus or amygdala. These findings strengthen evidence that PACAP may impact arousal-associated memory circuits in PTSD.


PACAP was associated with altered entorhinal cortex neurite density in PTSD.PACAP was not associated with altered neurite density in amygdala or hippocampus.PACAP may impact arousal-associated memory circuits.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Humanos , Feminino , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/metabolismo , Neuritos/metabolismo , Tonsila do Cerebelo/diagnóstico por imagem
3.
Nat Commun ; 15(1): 1198, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336756

RESUMO

How valuable a choice option is often changes over time, making the prediction of value changes an important challenge for decision making. Prior studies identified a cognitive map in the hippocampal-entorhinal system that encodes relationships between states and enables prediction of future states, but does not inherently convey value during prospective decision making. In this fMRI study, participants predicted changing values of choice options in a sequence, forming a trajectory through an abstract two-dimensional value space. During this task, the entorhinal cortex exhibited a grid-like representation with an orientation aligned to the axis through the value space most informative for choices. A network of brain regions, including ventromedial prefrontal cortex, tracked the prospective value difference between options. These findings suggest that the entorhinal grid system supports the prediction of future values by representing a cognitive map, which might be used to generate lower-dimensional value signals to guide prospective decision making.


Assuntos
Córtex Entorrinal , Hipocampo , Humanos , Córtex Entorrinal/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomada de Decisões
4.
J Int Neuropsychol Soc ; 30(2): 128-137, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37385978

RESUMO

OBJECTIVE: To explore the relationship between age, education, sex, and ApoE4 (+) status to brain volume among a cohort with amnestic mild cognitive impairment (aMCI). METHOD: One hundred and twenty-three participants were stratified into Hispanic (n = 75) and White non-Hispanic (WNH, N = 48). Multiple linear regression analyses were conducted with age, education, sex, and ApoE4 status as predictor variables and left and right combined MRI volumes of the hippocampus, parahippocampus, and entorhinal cortex as dependent variables. Variations in head sizes were corrected by normalization with a total intracranial volume measurement. RESULTS: Bonferroni-corrected results indicated that when controlling for ApoE4 status, education, and age, sex was a significant predictor of hippocampal volume among the Hispanic group (ß = .000464, R2 = .196, p < .01) and the WNH group (ß = .000455, R2 = .195, p < .05). Education (ß = .000028, R2 = .168, p < .01) and sex (ß = .000261, R2 = .168, p < .01) were significant predictors of parahippocampal volume among the Hispanic MCI group when controlling for the effects of ApoE4 status and age. One-way ANCOVAs comparing hippocampal and parahippocampal volume between males and females within groups revealed that females had significantly larger hippocampal volumes (p < .05). Hispanic females had significantly larger hippocampal (p < .001) and parahippocampal (p < .05) volume compared to males. No sex differences in parahippocampal volume were noted among WNHs. CONCLUSIONS: Biological sex, rather than ApoE4 status, was a greater predictor of hippocampal volume among Hispanic and WNH females. These findings add to the mixed literature on sex differences in dementia research and highlight continued emphasis on ethnic populations to elucidate on neurodegenerative disparities.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Humanos , Masculino , Feminino , Apolipoproteína E4/genética , Córtex Entorrinal/diagnóstico por imagem , Biomarcadores , Demografia
5.
Neuroimage ; 284: 120461, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37981203

RESUMO

INTRODUCTION: Cerebral small vessel disease (cSVD) is a growing epidemic that affects brain health and cognition. Therefore, a more profound understanding of the interplay between cSVD, brain atrophy, and cognition in healthy aging is of great importance. In this study, we examined the association between white matter hyperintensities (WMH) volume, number of lacunes, entorhinal cortex (EC) thickness, and declarative memory in cognitively healthy older adults over a seven-year period, controlling for possible confounding factors. Because there is no cure for cSVD to date, the neuroprotective potential of an active lifestyle has been suggested. Supporting evidence, however, is scarce. Therefore, a second objective of this study is to examine the relationship between leisure activities, cSVD, EC thickness, and declarative memory. METHODS: We used a longitudinal dataset, which consisted of five measurement time points of structural MRI and psychometric cognitive ability and survey data, collected from a sample of healthy older adults (baseline N = 231, age range: 64-87 years, age M = 70.8 years), to investigate associations between cSVD MRI markers, EC thickness and verbal and figural memory performance. Further, we computed physical, social, and cognitive leisure activity scores from survey-based assessments and examined their associations with brain structure and declarative memory. To provide more accurate estimates of the trajectories and cross-domain correlations, we applied latent growth curve models controlling for potential confounders. RESULTS: Less age-related thinning of the right (ß = 0.92, p<.05) and left EC (ß = 0.82, p<.05) was related to less declarative memory decline; and a thicker EC at baseline predicted less declarative memory loss (ß = 0.54, p<.05). Higher baseline levels of physical (ß = 0.24, p<.05), and social leisure activity (ß = 0.27, p<.01) predicted less thinning of right EC. No relation was found between WMH or lacunes and declarative memory or between leisure activity and declarative memory. Higher education was initially related to more physical activity (ß = 0.16, p<.05) and better declarative memory (ß = 0.23, p<.001), which, however, declined steeper in participants with higher education (ß = -.35, p<.05). Obese participants were less physically (ß = -.18, p<.01) and socially active (ß = -.13, p<.05) and had thinner left EC (ß = -.14, p<.05) at baseline. Antihypertensive medication use (ß = -.26, p<.05), and light-to-moderate alcohol consumption (ß = -.40, p<.001) were associated with a smaller increase in the number of lacunes whereas a larger increase in the number of lacunes was observed in current smokers (ß = 0.30, p<.05). CONCLUSIONS: Our results suggest complex relationships between cSVD MRI markers (total WMH, number of lacunes, right and left EC thickness), declarative memory, and confounding factors such as antihypertensive medication, obesity, and leisure activitiy. Thus, leisure activities and having good cognitive reserve counteracting this neurodegeneration. Several confounding factors seem to contribute to the extent or progression/decline of cSVD, which needs further investigation in the future. Since there is still no cure for cSVD, modifiable confounding factors should be studied more intensively in the future to maintain or promote brain health and thus cognitive abilities in older adults.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Substância Branca , Humanos , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Substância Branca/diagnóstico por imagem , Córtex Entorrinal/diagnóstico por imagem , Anti-Hipertensivos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Atividades de Lazer
6.
Psychiatry Res Neuroimaging ; 335: 111707, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37639979

RESUMO

The current study aimed to validate entorhinal and transentorhinal cortical volumes measured by the automated segmentation tool Automatic Segmentation of Hippocampal Subfields (ASHS-T1). The study sample comprised 34 healthy controls (HCs), 37 individuals with amnestic mild cognitive impairment (aMCI), and 29 individuals with Alzheimer's disease (AD) dementia from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Entorhinal and transentorhinal cortical volumes were assessed using ASHS-T1, manual segmentation, as well as a widely used automated segmentation tool, FreeSurfer v6.0.1. Mean differences, intraclass correlation coefficients, and Bland-Altman plots were computed. ASHS-T1 tended to underestimate entorhinal and transentorhinal cortical volumes relative to manual segmentation and FreeSurfer. There was variable consistency and low agreement between ASHS-T1 and manual segmentation volumes. There was low-to-moderate consistency and low agreement between ASHS-T1 and FreeSurfer volumes. There was a trend toward higher consistency and agreement for the entorhinal cortex in the aMCI and AD groups compared to the HC group. Despite the differences in volume measurements, ASHS-T1 was sensitive to entorhinal and transentorhinal cortical atrophy in both early and late disease stages. Based on the current study, ASHS-T1 appears to be a promising tool for automated entorhinal and transentorhinal cortical volume measurement in individuals with likely underlying AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Córtex Entorrinal/diagnóstico por imagem
7.
Neuroreport ; 34(15): 741-747, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37556595

RESUMO

To study the developmental patterns of brain structure in adolescent rats based on the registration with the SIGMA template by 3.0T MRI. Forty male Sprague-Dawley rats (180-220 g) were randomly divided into four groups. Rats in the four groups underwent 3.0 T MRI head scans at 7, 11, 15, and 19 weeks of age, respectively. The voxel-based morphological analysis of the rat brain was performed by coregistration with the SIGMA rat brain template. 3.0 T MRI can be used to study the anatomical structure of the rat brain by registration with the SIGMA template The gray matter volume of the bilateral hippocampus and bilateral entorhinal cortex increased significantly in the development of the rat from 7 to 19 weeks of age. In this period, the subtle structure of the rat brain is asymmetrically developed. The rat aged 7-19 weeks has asymmetrical gray matter volume development in the bilateral entorhinal cortex and hippocampus.


Assuntos
Encéfalo , Substância Cinzenta , Animais , Masculino , Ratos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Córtex Entorrinal/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética/métodos , Ratos Sprague-Dawley
8.
Sensors (Basel) ; 23(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37420812

RESUMO

Early diagnosis of mild cognitive impairment (MCI) with magnetic resonance imaging (MRI) has been shown to positively affect patients' lives. To save time and costs associated with clinical investigation, deep learning approaches have been used widely to predict MCI. This study proposes optimized deep learning models for differentiating between MCI and normal control samples. In previous studies, the hippocampus region located in the brain is used extensively to diagnose MCI. The entorhinal cortex is a promising area for diagnosing MCI since severe atrophy is observed when diagnosing the disease before the shrinkage of the hippocampus. Due to the small size of the entorhinal cortex area relative to the hippocampus, limited research has been conducted on the entorhinal cortex brain region for predicting MCI. This study involves the construction of a dataset containing only the entorhinal cortex area to implement the classification system. To extract the features of the entorhinal cortex area, three different neural network architectures are optimized independently: VGG16, Inception-V3, and ResNet50. The best outcomes were achieved utilizing the convolution neural network classifier and the Inception-V3 architecture for feature extraction, with accuracy, sensitivity, specificity, and area under the curve scores of 70%, 90%, 54%, and 69%, respectively. Furthermore, the model has an acceptable balance between precision and recall, achieving an F1 score of 73%. The results of this study validate the effectiveness of our approach in predicting MCI and may contribute to diagnosing MCI through MRI.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Aprendizado Profundo , Humanos , Doença de Alzheimer/patologia , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/patologia
9.
Neuron ; 111(17): 2756-2772.e7, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37390820

RESUMO

Tract-tracing studies in primates indicate that different subregions of the medial temporal lobe (MTL) are connected with multiple brain regions. However, no clear framework defining the distributed anatomy associated with the human MTL exists. This gap in knowledge originates in notoriously low MRI data quality in the anterior human MTL and in group-level blurring of idiosyncratic anatomy between adjacent brain regions, such as entorhinal and perirhinal cortices, and parahippocampal areas TH/TF. Using MRI, we intensively scanned four human individuals and collected whole-brain data with unprecedented MTL signal quality. Following detailed exploration of cortical networks associated with MTL subregions within each individual, we discovered three biologically meaningful networks associated with the entorhinal cortex, perirhinal cortex, and parahippocampal area TH, respectively. Our findings define the anatomical constraints within which human mnemonic functions must operate and are insightful for examining the evolutionary trajectory of the MTL connectivity across species.


Assuntos
Córtex Entorrinal , Lobo Temporal , Animais , Humanos , Lobo Temporal/diagnóstico por imagem , Córtex Entorrinal/diagnóstico por imagem , Memória , Neuroimagem , Imageamento por Ressonância Magnética/métodos , Hipocampo/anatomia & histologia
10.
J Alzheimers Dis ; 94(1): 259-279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37248900

RESUMO

BACKGROUND: Atrophy of the medial temporal lobe (MTL) is a biological characteristic of Alzheimer's disease (AD) and can be measured by segmentation of magnetic resonance images (MRI). OBJECTIVE: To assess the clinical utility of automated volumetry in a cognitively well-defined and biomarker-classified multi-center longitudinal predementia cohort. METHODS: We used Automatic Segmentation of Hippocampal Subfields (ASHS) to determine MTL morphometry from MRI. We harmonized scanner effects using the recently developed longitudinal ComBat. Subjects were classified according to the A/T/N system, and as normal controls (NC), subjective cognitive decline (SCD), or mild cognitive impairment (MCI). Positive or negative values of A, T, and N were determined by cerebrospinal fluid measurements of the Aß42/40 ratio, phosphorylated and total tau. From 406 included subjects, longitudinal data was available for 206 subjects by stage, and 212 subjects by A/T/N. RESULTS: Compared to A-/T-/N- at baseline, the entorhinal cortex, anterior and posterior hippocampus were smaller in A+/T+orN+. Compared to NC A- at baseline, these subregions were also smaller in MCI A+. Longitudinally, SCD A+ and MCI A+, and A+/T-/N- and A+/T+orN+, had significantly greater atrophy compared to controls in both anterior and posterior hippocampus. In the entorhinal and parahippocampal cortices, longitudinal atrophy was observed only in MCI A+ compared to NC A-, and in A+/T-/N- and A+/T+orN+ compared to A-/T-/N-. CONCLUSION: We found MTL neurodegeneration largely consistent with existing models, suggesting that harmonized MRI volumetry may be used under conditions that are common in clinical multi-center cohorts.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/patologia , Disfunção Cognitiva/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia
11.
J Neurosci ; 43(16): 2874-2884, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36948584

RESUMO

The hierarchically organized structures of the medial temporal lobe are critically important for episodic memory function. Accumulating evidence suggests dissociable information processing pathways are maintained throughout these structures including in the medial and lateral entorhinal cortex. Cortical layers provide an additional dimension of dissociation as the primary input to the hippocampus derives from layer 2 neurons in the entorhinal cortex, whereas the deeper layers primarily receive output from the hippocampus. Here, novel high-resolution T2-prepared functional MRI methods were successfully used to mitigate susceptibility artifacts typically affecting MRI signals in this region providing uniform sensitivity across the medial and lateral entorhinal cortex. During the performance of a memory task, healthy human subjects (age 25-33 years, mean age 28.2 ± 3.3 years, 4 female) showed differential functional activation in the superficial and deep layers of the entorhinal cortex associated with task-related encoding and retrieval conditions, respectively. The methods provided here offer an approach to probe layer-specific activation in normal cognition and conditions contributing to memory impairment.SIGNIFICANCE STATEMENT This study provides new evidence for differential neuronal activation in the superficial versus deep layers of the entorhinal cortex associated with encoding and retrieval memory processes, respectively, in cognitively normal adults. The study further shows that this dissociation can be observed in both the medial and the lateral entorhinal cortex. The study was achieved by using a novel functional MRI method allowing us to measure robust functional MRI signals in both the medial and lateral entorhinal cortex that was not possible in previous studies. The methodology established here in healthy human subjects lays a solid foundation for subsequent studies investigating layer-specific and region-specific changes in the entorhinal cortex associated with memory impairment in various conditions such as Alzheimer's disease.


Assuntos
Doença de Alzheimer , Memória Episódica , Adulto , Humanos , Feminino , Adulto Jovem , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/fisiologia , Lobo Temporal/fisiologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Transtornos da Memória
12.
Cereb Cortex ; 33(6): 3265-3283, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36573396

RESUMO

During navigation, information at multiple scales needs to be integrated. Single-unit recordings in rodents suggest that gradients of temporal dynamics in the hippocampus and entorhinal cortex support this integration. In humans, gradients of representation are observed, such that granularity of information represented increases along the long axis of the hippocampus. The neural underpinnings of this gradient in humans, however, are still unknown. Current research is limited by coarse fMRI analysis techniques that obscure the activity of individual voxels, preventing investigation of how moment-to-moment changes in brain signal are organized and how they are related to behavior. Here, we measured the signal stability of single voxels over time to uncover previously unappreciated gradients of temporal dynamics in the hippocampus and entorhinal cortex. Using our novel, single voxel autocorrelation technique, we show a medial-lateral hippocampal gradient, as well as a continuous autocorrelation gradient along the anterolateral-posteromedial entorhinal extent. Importantly, we show that autocorrelation in the anterior-medial hippocampus was modulated by navigational difficulty, providing the first evidence that changes in signal stability in single voxels are relevant for behavior. This work opens the door for future research on how temporal gradients within these structures support the integration of information for goal-directed behavior.


Assuntos
Córtex Entorrinal , Hipocampo , Humanos , Córtex Entorrinal/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Descanso , Imageamento por Ressonância Magnética , Cabeça
13.
Hippocampus ; 32(9): 660-678, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35916343

RESUMO

Pathological changes in the medial temporal lobe (MTL) are found in the early stages of Alzheimer's disease (AD) and aging. The earliest pathological accumulation of tau colocalizes with the areas of the MTL involved in object processing as part of a wider anterolateral network. Here, we sought to assess the diagnostic potential of memory for object locations in iVR environments in individuals at high risk of AD dementia (amnestic mild cognitive impairment [aMCI] n = 23) as compared to age-related cognitive decline. Consistent with our primary hypothesis that early AD would be associated with impaired object location, aMCI patients exhibited impaired spatial feature binding. Compared to both older (n = 24) and younger (n = 53) controls, aMCI patients, recalled object locations with significantly less accuracy (p < .001), with a trend toward an impaired identification of the object's correct context (p = .05). Importantly, these findings were not explained by deficits in object recognition (p = .6). These deficits differentiated aMCI from controls with greater accuracy (AUC = 0.89) than the standard neuropsychological tests. Within the aMCI group, 16 had CSF biomarkers indicative of their likely AD status (MCI+ n = 9 vs. MCI- n = 7). MCI+ showed lower accuracy in the object-context association than MCI- (p = .03) suggesting a selective deficit in object-context binding postulated to be associated with anterior-temporal areas. MRI volumetric analysis across healthy older participants and aMCI revealed that test performance positively correlates with lateral entorhinal cortex volumes (p < .05) and hippocampus volumes (p < .01), consistent with their hypothesized role in binding contextual and spatial information with object identity. Our results indicate that tests relying on the anterolateral object processing stream, and in particular requiring successful binding of an object with spatial information, may aid detection of pre-dementia AD due to the underlying early spread of tau pathology.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Disfunção Cognitiva/diagnóstico por imagem , Demência/complicações , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos
14.
Sci Rep ; 12(1): 8565, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595790

RESUMO

The recently introduced orientation selective deep brain stimulation (OS-DBS) technique freely controls the direction of the electric field's spatial gradient by using multiple contacts with independent current sources within a multielectrode array. The goal of OS-DBS is to align the electrical field along the axonal track of interest passing through the stimulation site. Here we utilized OS-DBS with a planar 3-channel electrode for stimulating the rat entorhinal cortex (EC) and medial septal nucleus (MSN), two promising areas for DBS treatment of Alzheimer's disease. The brain responses to OS-DBS were monitored by whole brain functional magnetic resonance imaging (fMRI) at 9.4 T with Multi-Band Sweep Imaging with Fourier Transformation (MB-SWIFT). Varying the in-plane OS-DBS stimulation angle in the EC resulted in activity modulation of multiple downstream brain areas involved in memory and cognition. Contrary to that, no angle dependence of brain activations was observed when stimulating the MSN, consistent with predictions based on the electrode configuration and on the main axonal directions of the targets derived from diffusion MRI tractography and histology. We conclude that tuning the OS-DBS stimulation angle modulates the activation of brain areas relevant to Alzheimer's disease, thus holding great promise in the DBS treatment of the disease.


Assuntos
Doença de Alzheimer , Estimulação Encefálica Profunda , Núcleos Septais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/terapia , Animais , Encéfalo , Cognição , Estimulação Encefálica Profunda/métodos , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/fisiologia , Imageamento por Ressonância Magnética/métodos , Ratos
15.
Neurobiol Aging ; 112: 151-160, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182842

RESUMO

The entorhinal cortex is the site of some of the earliest pathological changes in Alzheimer's disease, including neuronal, synaptic and volumetric loss. Specifically, the lateral entorhinal cortex shows significant accumulation of tau neurofibrillary tangles in the amnestic mild cognitive impairment (aMCI) phase of Alzheimer's disease. Although decreased entorhinal cortex activation has been observed in patients with aMCI in the context of impaired memory function, it remains unclear if functional changes in the entorhinal cortex can be localized to the lateral or medial entorhinal cortex. To assess subregion specific changes in the lateral and medial entorhinal cortex, patients with aMCI and healthy aged-matched control participants underwent high-resolution structural and functional magnetic resonance imaging. Patients with aMCI showed significantly reduced volume, and decreased activation localized to the lateral entorhinal cortex but not the medial entorhinal cortex. These results show that structural and functional changes associated with impaired memory function differentially engage the lateral entorhinal cortex in patients with aMCI, consistent with the locus of early disease related pathology.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/patologia , Humanos , Imageamento por Ressonância Magnética , Transtornos da Memória/patologia
16.
CNS Neurosci Ther ; 28(3): 448-457, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34964261

RESUMO

AIMS: Entorhinal cortex (EC) deep brain stimulation (DBS) has shown a memory enhancement effect. However, its brain network modulation mechanisms remain unclear. The present study aimed to investigate the functional connectivity in the rat hippocampal-cortex network and episodic-like memory performance following EC-DBS. METHODS: 7.0 T functional MRI (fMRI) scans and episodic-like memory tests were performed 3 days and 28 days after EC-DBS in healthy rats. The fMRI data processing was focused on the power spectra, functional connectivity, and causality relationships in the hippocampal-cortex network. In addition, the exploration ratio for each object and the discrimination ratio of the "when" and "where" factors were calculated in the behavioral tests. RESULTS: EC-DBS increased the power spectra and the functional connectivity in the prefrontal- and hippocampal-related networks 3 days after stimulation and recovered 4 weeks later. Both networks exhibited a strengthened connection with the EC after EC-DBS. Further seed-based functional connectivity comparisons showed increased connectivity among the prefrontal cortex, hippocampus and EC, especially on the ipsilateral side of DBS. The dentate gyrus is a hub region closely related to both the EC and the prefrontal cortex and receives information flow from both. Moreover, acute EC-DBS also enhanced the discrimination ratio of the "where" factor in the episodic-like memory test on Day 3. CONCLUSION: EC-DBS caused a reversible modulation effect on functional connectivity in the hippocampal-cortex network and episodic-like memory performance.


Assuntos
Estimulação Encefálica Profunda , Memória Episódica , Animais , Encéfalo , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Imageamento por Ressonância Magnética , Ratos
17.
Neuroradiology ; 64(2): 279-288, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34247261

RESUMO

PURPOSE: To discover common biomarkers correlating with the Mini-Mental State Examination (MMSE) scores from multi-country MRI datasets. METHODS: The first dataset comprised 112 subjects (49 men, 63 women; range, 46-94 years) at the National Hospital Organization Kyushu Medical Center. A second dataset comprised 300 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (177 men, 123 women; range, 57-91 years). Three-dimensional T1-weighted MR images were collected from both datasets. In total, 14 deep gray matter volumes and 70 cortical thicknesses were obtained from MR images using FreeSurfer software. Total hippocampal volume and the ratio of hippocampus to cerebral volume were also calculated. Correlations between each variable and MMSE scores were assessed using Pearson's correlation coefficient. Parameters with moderate correlation coefficients (r > 0.3) from each dataset were determined as independent variables and evaluated using general linear model (GLM) analyses. RESULTS: In Pearson's correlation coefficient, total and bilateral hippocampal volumes, right amygdala volume, and right entorhinal cortex (ERC) thickness showed moderate correlation coefficients (r > 0.3) with MMSE scores from the first dataset. The ADNI dataset showed moderate correlations with MMSE scores in more variables, including bilateral ERC thickness and hippocampal volume. GLM analysis revealed that right ERC thickness correlated significantly with MMSE score in both datasets. Cortical thicknesses of the left parahippocampal gyrus, left inferior parietal lobe, and right fusiform gyrus also significantly correlated with MMSE score in the ADNI dataset (p < 0.05). CONCLUSION: A positive correlation between right ERC thickness and MMSE score was identified from multi-country datasets.


Assuntos
Doença de Alzheimer , Córtex Entorrinal , Doença de Alzheimer/diagnóstico por imagem , Córtex Entorrinal/diagnóstico por imagem , Feminino , Hipocampo , Humanos , Imageamento por Ressonância Magnética , Masculino , Lobo Temporal
18.
Cell Rep ; 37(5): 109954, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731612

RESUMO

Human neuroimaging studies have shown that, during cognitive processing, the brain undergoes dynamic transitions between multiple, frequency-tuned states of activity. Although different states may emerge from distinct sources of neural activity, it remains unclear whether single-area neuronal spiking can also drive multiple dynamic states. In mice, we ask whether frequency modulation of the entorhinal cortex activity causes dynamic states to emerge and whether these states respond to distinct stimulation frequencies. Using hidden Markov modeling, we perform unsupervised detection of transient states in mouse brain-wide fMRI fluctuations induced via optogenetic frequency modulation of excitatory neurons. We unveil the existence of multiple, frequency-dependent dynamic states, invisible through standard static fMRI analyses. These states are linked to different anatomical circuits and disrupted in a frequency-dependent fashion in a transgenic model of cognitive disease directly related to entorhinal cortex dysfunction. These findings provide cross-scale insight into basic neuronal mechanisms that may underpin flexibility in brain-wide dynamics.


Assuntos
Comportamento Animal , Cognição , Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Ritmo Teta , Adaptação Psicológica , Animais , Mapeamento Encefálico , Córtex Entorrinal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Cadeias de Markov , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Optogenética , Fatores de Tempo
19.
Neuroimage ; 245: 118723, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780919

RESUMO

The medial (MEC) and lateral entorhinal cortex (LEC), widely studied in rodents, are well defined and characterized. In humans, however, the exact locations of their homologues remain uncertain. Previous functional magnetic resonance imaging (fMRI) studies have subdivided the human EC into posteromedial (pmEC) and anterolateral (alEC) parts, but uncertainty remains about the choice of imaging modality and seed regions, in particular in light of a substantial revision of the classical model of EC connectivity based on novel insights from rodent anatomy. Here, we used structural, not functional imaging, namely diffusion tensor imaging (DTI) and probabilistic tractography to segment the human EC based on differential connectivity to other brain regions known to project selectively to MEC or LEC. We defined MEC as more strongly connected with presubiculum and retrosplenial cortex (RSC), and LEC as more strongly connected with distal CA1 and proximal subiculum (dCA1pSub) and lateral orbitofrontal cortex (OFC). Although our DTI segmentation had a larger medial-lateral component than in the previous fMRI studies, our results show that the human MEC and LEC homologues have a border oriented both towards the posterior-anterior and medial-lateral axes, supporting the differentiation between pmEC and alEC.


Assuntos
Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão , Córtex Entorrinal/anatomia & histologia , Córtex Entorrinal/diagnóstico por imagem , Adulto , Conjuntos de Dados como Assunto , Humanos
20.
Neuroimage ; 244: 118563, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537382

RESUMO

The medial temporal lobe drives semantic congruence dependent memory formation. However, the exact roles of hippocampal subfields and surrounding brain regions remain unclear. Here, we used an established paradigm and high-resolution functional magnetic resonance imaging of the medial temporal lobe together with cytoarchitectonic probability estimates in healthy humans. Behaviorally, robust congruence effects emerged in young and older adults, indicating that schema dependent learning is unimpaired during healthy aging. Within the medial temporal lobe, semantic congruence was associated with hemodynamic activity in the subiculum, CA1, CA3 and dentate gyrus, as well as the entorhinal cortex and laterobasal amygdala. Importantly, a subsequent memory analysis showed increased activity for later remembered vs. later forgotten congruent items specifically within CA3, and this subfield showed enhanced functional connectivity to the laterobasal amygdala. As such, our findings extend current models on schema dependent learning by pinpointing the functional properties of subregions within the medial temporal lobe.


Assuntos
Tonsila do Cerebelo/diagnóstico por imagem , Região CA3 Hipocampal/diagnóstico por imagem , Memória de Longo Prazo/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Córtex Entorrinal/diagnóstico por imagem , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Lobo Temporal/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...